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ABS TRAC T 

In many technical applications it is desired to f i t  a nonlinear model t o  

a s e t  of observations. 

t o  determine a bes t  s e t  of parameters in the l ea s t  squares  sense .  

Several iterative techniques have been devised in  order 

In t h i s  paper we  d i scuss  conditions for convergence, and give error 

es t imates  for a c l a s s  of methods, which includes as particular c a s e s  some 

well  known techniques. 

modified Newton's i terations for a suitable functional equation, and then a 

general  theorem, f i rs t  indicated by Bartle, is proved and applied to this  

particular case.  The hypotheses are s e t  in such a way that their checking by 

an  automatic computer i s  made possible. 

I t  is shown t h a t  those methods can  be considered as  

Some numerical examples are given. The main aim is to show that  t he  

automatic error estimation procedure works, rather than attempting t o  optimize 

the computational scheme.  



ITERATIVE METHODS FOR SOLVING NONLINEAR LEAST SQUARES PROBLEMS 

Victor Pereyra 

1. Introduction. 

In many technical applications it is desired t o  f i t  a nonlinear model t o  a 

s e t  of observations. When the bes t  fit i s  sought in the l e a s t  squares  s e n s e  the 

problem can  be s ta ted  a s  follows: 

Given the nonlinear transformation F( x) = y between the  f in i te  dimensional . ~ - -  -- 
n 

Euclidean spaces  E 

b E E m ,  find a vector x'" E E 

and Em ( n  m )  , and the vector of "observations" - 
-" n which minimizes the  L -norm of F( xJ - b. - 2 - _ -  

We consider in  t h i s  paper a general class of i terative methods for finding 

2 
stat ionary points of ( 1  F( x) -bI[ 

of the  form: 

If we call f(  x) = F( x) - - b ,  these methods are  of - -  - -  - 2 '  - -  

( v  = O , l ,  . . . ) ,  
-1 T 

X = x  - [ T  1 fpV) f (x)  Y t 1  -7/ Y 

n 
where t h e  T a re  linear, nonsingular transformations of E in  i tself ,  and 

[2v] 
-V 

T is the t ranspose of the Jacobian matrix of the transformation - f . In 

components 

By choosing T appropriately we can  obtain some well  known methods 
-V 

used  i n  the solution of nonlinear l ea s t  squares  problems. For instance,  i f  
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then the resulting i teration corresponds t o  the Gaus s-Newton T T = f g ( x  ) L'((x,)  
-I, - - v  

method ( see Moore and Zeigler [ 71 or Hartley [ 41 and references there in) .  

T 
If -v T = - f g (  -0 x ) - f 9 (  -0 x ) for all v ,  then we could call th i s  the simplified 

Gauss-Newton method. 

Jakovlev [ 51, which replace f 9 (  x ) f 9 (  x ) by approximate expressions could 

In general, schemes l ike  those  of Powell [ 91, and 

T 
-v - -I, - 

be considered into the  class of methods described by ( 1.1).  

Sufficient conditions for the convergence of the Gaus s-Newton method 

were obtained i n  Zadunaisky and Pereyra [ 111 by applying a standard fixed point 

t h e  ore m, 

2 
2 Observing that  to find the s ta t ionary points of 11 f (  x)I/ is equivalent t o  

finding the zeros  of i t s  gradient, t h e  problem is reduced to the  solut ion of the 

n X n system of nonlinear equations 

T 

= f ' (  x) l f (  x) = - 0 . - -  - -  

If we  now regard the i teration (1. 1) as a method for solving ( 1. 2) then a 

general  theorem by Bartle [ 11 c a n  be applied in  order t o  obtain suff ic ient  conditions 

for convergence, and error bounds for the s u c c e s s i v e  approximations. We include 

a proof of th i s  theorem s ince  in  Bartless paper it is only vaguely indicated. 

Considering the solution of overdetermined systems of nonlinear equations 

n m  
of t h e  form - -  f (  x) - 7  0 - f : E -+ E 

gence of generalized versions of Newton's method and the  simplified ( or modified) 

, Ben-Israel [ 21, [ 31 h a s  s tud ied  the  conver- 

Newton method. The general izat ions c o n s i s t  in  replacing the inverses  of the 

Jacobian matrix of - -  f( x) , which appear in the standard nonsingular n X  n case, 

by their  pseudoinverses. This in  particular permits considerations of the  case 

in  which rank f * (  x) < n . - -  
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In this  paper we will  only be concerned with t h e  c a s e  of full rank ( = n )  

Since i n  tha t  case 

( 1 . 3 )  [ f s (  x) T f '(  x) ]- ' f ' (  x) pseudoinverse of f ' (  x) E [ f(5) ] t , - -  - - - - -  - -  

we see tha t  the Gauss-Newton method coincides  with Ben-Israels s generalized 

Newton-Raphson's method. 

The conditions obtained from Bartle's theorem for the general  i teration (1.1) 

are spec ia l ized  t o  t h e  Gauss-Newton method 

(1. 3) for the pseudoinverse of f ' (  x) a l lows 

cedure which can  be implemented on a digita 

- -  

in Theorem 4. 1, and the representation 

u s  t o  give an error estimation pro- 

computer. Ben-Israel's theorem and 

our resu l t  do  not seem t o  be comparable. On one s ide  we require conditions on 

the second derivatives of t h e  function f (  x) 

we require only the boundedness of 11 [ - fs( xo) fL(x,)J I( while he  uses the 

condition 11 [ - -  f '  ( x) ] 

while he  dDes not. On the other hand - -  
T 1 

- [_f' (z)] '11 - < N(I - x-y(I which is Dbviously more difficult 

t o  verify. 

An implementation of the error estimation procedure is briefly explained 

in  Section 5. Finally we present in  Section 6 two numerical examples. 

#622 -3  - 



2. Approximate Newton type iteration. 

A s  we  said in the Introduction, the problem of finding the stationary values  

of IIf(5) - b(/Z is equivalent to that  of finding the solutions of the n X  n system 
2 

of nonlinear equations: 

T q(2) = f ' ( x )  f ( x )  = o  - - -  - -  

T 
where f (  x) = - -  F( x) - - b ,  and - -  f ' (  x) is i t s  Jacobian matrix. If w e  put - f ' (  - -  x) f ' (  - x)' - -  

N( - -  x) and assume tha t  - -  f (  x) is twice Frgchet differentiable in a certain region 

S2 c En , then the Fre'chet derivative ( Jacobian) of - -  q( x) can  be written as 

This is e a s i l y  obtained by applying the operational calculus  with Fre'chet deriva- 

t ives  ( cf. Dieudonnd [ 121). 

I In the benefit of those readers not familiar with this  calculus  we wil l  obtain 

th i s  formula by operating on the components of the vector functions involved. We 

I will  u s e  tensor  notation with the summation convention. On the f i rs t  place 

and 

Thus, going back to  the matrix notation w e  obtain ( 2. 2 ) .  

The standard Newton-Kantorovich method for solving ( 2. 1) is: 

( 2 . 3 )  

-1- #622 



and the approximate Newton iteration ( s e e  Bartle [ 11) i s  obtained i f  - -  c p ’ (  x v )  is 

replaced by linear, nonsingular operators T which a re  c lose  to cp’( x ) i n  

some sense .  

-V - -0 

But this is essent ia l ly  what is s ta ted  in  equation (1.1) .  Thus we 

can apply Bartle’s theorem t o  that iteration obtaining sufficient conditions for its 

convergence. We can write those conditions in  the following form: 

n 
Theorem 2.1. &t T be a sequence of linear nonsingular - _ _  operators from E 

into itself, such that, for x E En and p > 0 the sphere S( xo ~ p)  c R ,  

-V 

- -0 ~- - 

-k< 
( e )  k = A ( ~ + E )  < 1 ,  r -  l - k - p  

Under these  conditions t h e  iteration (1.1) is wel l  defined and converges 
_. -. 

.I. ‘6% J- 

t o  a solution - x”. of g( 5) = - 0 .  

solution contained in this  sphere. 

1lC-x 11 < kvr  . 

Proof: First of a l l  from ( 1. 1 ) ,  ( a)  ,and ( d) i t  follows tha t  

Furthermore, 115 - xo ( 1  - < r and is the only 

The  rapidity of the convergence is given by 
.(r 

-v - 

Furthermore, by ( 1. 1) , ( b) , and  ( c) 

#622 - 5-  



- 6- 

With formulas ( 2. 4) and ( 2. 5) we  have s tar ted an  induction argument. 

Assume that, for u = 1 , .  . . , n 

( i u )  I I X  - x II 5 P , 
-1, -0 

( ii ) II x - x I1 < l/I'p(xv-l) /I 

(i i i  

U -v -u-1 - 

ll(p(x > l l  < ( P I - E ) I I x  -u  - x  -u-1 II . U -u  - 

From ( 1.1) and ( a )  we obtain 

II x - x \I (&+ -n ) I1 , -n t l  -n ( ii ) n t l  

and by ( iii ) , ( ii ) ,  ( iiiv-l), . . . 
U V 

Furthermore 

which is ( i  ) . n t l  

Having proved th is  w e  c a n  u s e  (c) on 

#622 



t h u s  obtaining (iii  ) which completes the induction argument. n t l  

With this  we can es tab l i sh  that the sequence {x 1 generated by (1. 1) 
-1, 

is a Cauchy sequence and simultaneously we can obtain the error estimation. 

In fact, for any p > 0 

.b 

Consequently, there ex i s t s  x“: E S( x , r )  such that x --f x *,. , and 
-0 -V 

- 

fur  therm ore 

can  write 

.L ‘8 .  J- 4, -,,. , 1  

which is impossible unless  x = x . - - 

# 6 2 2  -7-  



3 .  Another s e t  of sufficient conditions. 

Sometimes it is computationally advantageous t o  replace hypothesis ( c) 

in  Theorem 2 . 1  by other conditions which, though giving a s l ight ly  less general 

result ,  a re  more e a s y  to handle. 

Lemma 3.1. Suppose that y ,  K > 0 ex i s t  s u c h  that 
2 

( c2) I l g g l l  ( K 2 ,  zc S ( X 0 ,  P )  , 

are  sat isf ied,  then ( c )  follows with p = K p t 

Proof: We will f i rs t  calculate  a bound for !I - 'p' 

( 2. 2)  and the hypotheses 

2 

If we call  K p -t y = p then by Bartless L e m m a  1 : 2 

ll&) -&I - ' p s ( x g ) ( l ( - - y )  I 1  ( P l l l L - y I l  

which is ( c ) ,  

-8- #622 



4. The Gauss-Newton method. 

By taking T = N( x ) i n  ( 1.1) we obtain the wel l  known Gauss-Newton -v --v 

method fo r  solving nonlinear l ea s t  squares problems. We will  express  now the 

conditions ( a )  and ( b )  of Theorem 2.1  in terms of some of the quant i t ies  used in  

Section 3 .  If ( cl) and ( c2)  hold then 

implies condition ( b) of Theorem 2. 1 with E = p . This  follows e a s i l y  from 

We want to  show now that the ex is tence  and uniform boundedness of 

-1 E(() 
-1 N_(x,) . 

(ZE g(xo ,  p))  is a consequence of the existence and boundedness of 

To do s o  we wil l  s ta te  without proof a wel l  known resul t  of the theory 

of matrices: 

Lemma 4.1. Let B and C be n X n  matrices. Assume that  - - - - -  
( i) E is nonsingular and I \  - B-lIl  - < CY ; 

( iii) CY 6 < 1 , 

then - -  C is nonsingular and 

From th i s  we can  prove the following: 

#6 22 -9 - 



ex i s t s  and I( N( - -  x)-l(( < 1. 

Proof: Take in  Lemma 4. 1 

1 
2 B = N ( x ) ,  C = N ( x ) ,  a = - A  and 6 = K  2 p .  - - -  - -0 - 

1 1 
2 2  4 Since a6 =-K p we have by ( 3 .  1) that a 6  < - and thus N( - x )  is nonsingular. 

Furthermore 

-10- 

Collecting these  results together we can  s t a t e  the following theorem. 

Theorem 4. 3 .  With the same notation as above and for x E R ,  l e t  u s  assume that 
-0 

and that  N ( x  ) is nonsingular. .- Define - - - 0  -1- 

A E 2 \I N(xO)- ' / l  - -  , 

and assume tha t  k = 2 A (  K p t y) < 1 ,  Define -____ 2 -- 

(4.4) 

( 4 . 5  

( 4 . 6 )  

( 4 .  7 )  

Assume further that r < p ,  then the sequence (x 1 defined by -v ------ - 

(4.  8 )  
-1 

- v t l  X = x  -v -N_((xv) p(Ijv) 

converges to  the unique solution x" of - - -  cp( x) = - 0 in the sphere S( xo, r )  . 

Moreover, the rate of convergence is estimated by _--~ ____-- 

1 1 ~ ' ' -  x 11 < kvr  . ( 4 . 9 )  -v - - 

#622 
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5. Automatic error estimation. 

A Fortran 63 program has  been written for the CDC 1604 computer a t  the 

University of Wisconsin Computing Center, which implements the Gauss-Newton 

method with the error estimation procedure given in Theorem 4. 3. 

The hypotheses a re  checked automatically a s  the i teration proceeds, and 

a s  soon a s  they are sat isf ied it can  be ensured that  the process  converges and 

the bound ( 4 .  9 )  used to es t imate  the norm of the error. 

A s  s een  in  s t ep  V of the procedure described below: a r e l axa t im  technique 

is used  in  order to  prevent divergence in  the earlier s tages  of the iteration 

( cf. Hartley [ 41 ) . 

An interesting feature i s  

Reiter [ l o ] )  to  compute y and 

a s  a n  n-dimensional hypercube 

the use of interval arithmetic ( cf. Moore [ 61 ~ 

K 2  in Theorem 4. 3. Given the region L? 

C ( 5 ,  p)  with edge 2p and center  - x ~ we compute 
N 7- 

-I N 

( 4. 3 )  and ( 4. 4) in interval arithmetic with the argument x = ( x 

and from there we can  obtain y and K immediately. 

- p ~ x i  -t p )  i - 

2 

A further sophistication would be t o  use a pragram to generate the code 

for the partial derivatives which a re  needed in the discussion.  

this  s ince  our t e s t  c a s e s  were very simple, but such a program is avai lable  

( Reiter [ 101 ) and it has  been successfu l ly  applied to  the solution of some 

complicated s y s  tems of nonlinear equations by Newton's method. 

We have not done 

We will  briefly describe n3w the computational scheme.  We u s e  in this  

description informal Algol. 

Naur [ 81 . 

For details  on the Algorithmic Language Algol, cf. 

The notation is t h e  same as  in Section 4. The narm used  is the Id@ norm 
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2 
except  for the residual  11 fl12 where, of course,  w e  u s e  the L norm. 2 

Let x and p be given. -0 

begin procedure error; 

i f  N( x ) is singular then go to  error 1 ;  --- -0 - 
- -1 T 

11: A X  :=N_(so) T ( x  ) f ( x  ) ;  p : = p  ; -0 -0 --0 

IV: i f  2y X < 1 then go to  Rest of error procedure -- e l s e  - -- - 0 0  - 

V: comment this is the relaxation routine; 

for i I = 0 s t ep  1 until  p d o  begin - -- 

comment p is a given integer; 

i -i x = x  - 2  A x  ; -1 -0 -0  

i x : = x  ; g o  to  I end e n d ;  -0 -1 -- -- 

Rest of error procedure: K 2  a -  max ( ( I  N_Vx)ll) : 
X € S ( X  , p )  -0 - 

k : = 2 X ( K 2 p S y  0 ) :  

-12- f i622  



VI : i f  - 

i f  - 

II 'p( so) I1 
k < 1 then begin R O -  -- ; 

0 .- 1-  k -- 

R > p then go t o  V ;  --- 0 

comment E is the desired accuracy; 

for i : = O  s t e p  1 until q do - - - 

x :=x -N_(xi) -1 fs(xi) T r ( x . )  end - i t1  -i -1 - 

go to v ;  -- 

error 1 :  e n d .  

#622 
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6. Test  c a s e s .  - 

The following t e s t  c a s e s  have been run on t h e  CDC 1604: 

x t  

1) Fi( xl, x2, x3) = g( t i ,  2) = x2 e l i + X  3 ’  

1 0 < m < 2 0 ,  I t . \  5 1 0 ,  yi taken from tab les  with different accurac ies  
1 - -  

( f o r  given - x::’ ) . 
t 
i 

Sample results are  given in Table 1 for y = 0. 1 e - 5 truncated a t  the i 

f i f th  significant figure; m = 10, - 2  < t .  < 2. 5 .  
1 -  - 

The conditions were usually fulfilled when the i terates  were quite c lose  

to the exac t  solution. 

g ( t i , x  1’ x 2’ x )  3 = x  2 s i n ( x t )  l i  + x  3 ’  

Taking y = s in  t t o  3D for t .  = ( 0 .  105, 0. 25, 0 . 4 ,  0. 55, 0. 7,  0 . 9 ,  

We have obtained the resu l t s  

i i 1 

1. 1, 1. 25, 1, 35, 1. 45, 1. 55, 1. 57, 1. 6 ) ,  m = 13. 

shown in Table 2. 

In t h e  second example we see that  before the 3rd i teration the condition 

k < 1 is not fulfilled. Then 2Xy becomes l e s s  than one and simultaneously 

k < 1 is a l s o  fulfilled. Thus r can  be calculated and i t  comes t o  be < p .  The 

error estimations a re  then read in the corresponding column. In this  example we 

have, instead of using the second part of VI, chosen to  proceed as i f  every 

i teration were the first ,  s ince  in  this way the error estimation is much better 

than the one obtained directly from the  theorem. 

have two error estimations: 7. 9 X 10 

as  x and 3. 5 X  10 i f  we recompute everything anew. For the  5th i terate 

Thus, in the 4th i teration we 

-5 
obtained by considering the third i terate  

-10 
-0 ’ 

-14- #622 



we give in  parentheses the error estimation obtained i f  the 4th i terate  is taken 

as  x . 
-0 

The disparity showed by these  estimations stem from the fac t  that in this  

2 i tself  is quite s m a l l .  2 11 f ( x") ( 1  c a s e  the convergence is fas te r  than l inear s ince 

This does not have to  be the  c a s e  in more real  problems in which the model cannot 

be expected to reproduce the observations very accurately.  

- -  

The conclusion we can  draw from these  and other experiments we have 

carried out is that the most difficult part i n  t h i s  error procedure i s  the choice of 

a n  appropriate p . 

Also i t  is clear  that in i t s  present form the conditions a re  fulfilled only 

when we are  quite c lose  to  the exac t  solution. 

t he  definition of r that  this  quantity can be obtained with very l i t t le  effort i f  k 

is ignored and, from a practical  point of view, small values  of r could be enough 

assurance  of convergence, and they could be used as error estimators without any 

further check. 

s t ep  I of t he  error procedure. 

On the other hand, we see from 

In this c a s e  the only extra computation would be that of t h e  
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